您的位置: ag视讯 >> 资讯

清北应届生,撑起deepseek团队一片天-ag视讯

2025-01-05 13:50 来源:投资界发布者:宋元明清阅读量:11253   

deepseek-v3大模型横空出世,以1/11算力训练出超过llama 3的开源模型,震撼了整个ai圈。

紧接着,“雷军开千万年薪挖deepseek研究员罗福莉”的传闻,也使得人们把目光聚焦向deepseek的人才。

这下不只科技圈,全网都在好奇,连小红书上都有人发帖询问,这究竟是一只怎样的团队?

国际上,也有人把创始人梁文锋的访谈翻译成英语,还加了注释,试图从中寻找这家公司崛起的蛛丝马迹。

量子位整理各种资料发现,deepseek团队*的特点就是年轻。

应届生、在读生,特别是来自清北的应届生在其中非常活跃。

他们中的一些人,2024年一边在deepseek搞研究,另一边新鲜热乎的博士学位论文刚评上奖。

他们中有的参与了从deepseek llm v1到deepseek-v3的全程,有的只是实习了一段时间也做出重要成果。

为deepseek提出mla新型注意力、grpo强化学习对齐算法等关键创新的,几乎都是年轻人。

deepseek核心成员揭秘

2024年5月发布的deepseek-v2,是致使这家大模型公司破圈的关键一环。

其中最重要的创新是提出了一种新型注意力,在transformer架构的基础上,用mla替代了传统的多头注意力,大幅减少了计算量和推理显存。

在一众贡献者中,高华佐和曾旺丁为mla架构做出了关键创新。

高华佐非常低调,目前只知道是北大物理系毕业。

另外,在“大模型创业六小强”之一阶跃星辰的专利信息中也可以看到这个名字,暂不确定是否是同一人。

而曾旺丁来自北邮,研究生导师是北邮人工智能与网络搜索教研中心主任张洪刚。

deepseek-v2工作中还涉及到了另一项关键成果——grpo。

deepseek-v2发布前三个月,deepseek-math问世,其中提出了grpo。

grpo是ppo的一种变体rl算法,放弃了critic模型,而是从群体得分中估算baseline,显著减少了训练资源的需求。

grpo在圈内得到广泛关注,另一家国内开源大模型阿里qwen 2.5的技术报告中也透露用到了grpo。

deepseekmath有三位核心作者是在deepseek实习期间完成的工作。

核心作者之一邵智宏是清华交互式人工智能课题组博士生,师从黄民烈教授。

他的研究领域包括自然语言处理、深度学习,特别对如何能构建一个稳健且可扩展的ai系统感兴趣,这个ai系统能利用多样化的技能整合异构信息,并能准确回答各种复杂的自然语言问题。

邵智宏之前还曾在微软研究院工作过。

deepseekmath之后,他还参与了deepseek-prover、deepseek-coder-v2、deepseek-r1等项目。

另一位核心作者朱琪豪是北大计算机学院软件研究所2024届博士毕业生,受熊英飞副教授和张路教授指导,研究方向为深度代码学习。

据北大计算机学院官方介绍,朱琪豪曾发表ccf-a类论文16篇。在ase和esec/fse上分别获得acm sigsoft杰出论文奖一次,提名一次。一篇论文进入esec/fse会议同年的引用前三名。

在deepseek团队,朱琪豪还基于他的博士论文工作,主导开发了deepseek-coder-v1。

其博士论文《语言定义感知的深度代码学习技术及应用》也入选了2024ccf软件工程专业委员会博士学位论文激励计划。

还有一位核心作者同样来自北大。

北大博士生peiyi wang,受北京大学计算语言学教育部重点实验室穗志方教授指导。

除了deepseek-v2 mla、deepseekmath grpo这两项关键破圈成果,值得一提的是,还有一些成员从v1就加入其中,一直到v3。

代表人物之一代达劢,2024年博士毕业于北京大学计算机学院计算语言所,导师同样是穗志方教授。

代达劢学术成果颇丰,曾获emnlp 2023*长论文奖、ccl 2021*中文论文奖,在各大顶会发表学术论文20篇 。

2024年中国中文信息学会“博士学位论文激励计划”共入选10篇来自中国大陆高校的博士毕业论文,其中就有他的《预训练语言模型知识记忆的机理分析及能力增强关键技术研究》。

以及北大元培学院的王炳宣。

王炳宣来自山东烟台,2017年进入北大。

硕士毕业加入deepseek,参与了从deepseek llm v1开始的一系列重要工作。

清华这边的代表人物还有赵成钢。

赵成钢此前是衡水中学信息学竞赛班成员,ccf noi2016银牌得主。

之后赵成钢进入清华,大二时成为清华学生超算团队正式成员,三次获得世界大学生超算竞赛冠军。

赵成钢在deepseek担任训练/推理基础架构工程师,有英伟达实习经历。

deepseek是一支怎样的团队

这些鲜活的个体,足以引发人们的赞叹。

但还不足以回答最初的问题,deepseek到底是一支怎样的团队?有怎样的组织架构?

答案或许还要从创始人梁文锋身上找。

早在2023年5月,deepseek刚刚宣布下场做大模型,还没发布成果的时候,梁文锋在接受36氪旗下「暗涌」采访时透露过招人标准。

看能力,而不是看经验。

我们的核心技术岗位,基本以应届和毕业一两年的人为主。

从后面一年多陆续发表的论文贡献名单中也可以看出,确实如此,博士在读、应届以及毕业一两年的成员占很大一部分。

即使是团队leader级别也偏年轻化,以毕业4-6年的为主。

例如领导deepseek的后训练团队的吴俣,2019年北航博士毕业、在微软msra参与过小冰和必应百科项目。

吴俣博士期间接受北航李舟军教授和msra前副院长周明博士的联合培养。

与他师出半个同门的是郭达雅,中山大学印鉴教授与msra周明博士联合培养,2023年博士毕业。

2024年7月他加入deepseek,主要参与了一系列数学和代码大模型的工作。

郭达雅上学期间还有一项事迹,本科期间在msra实习一年里发表两篇顶会论文,他笑称“在刚入学的第三天,就完成了中大博士生的毕业要求。”

除了团队成员年轻化之外,deepseek在国内ai公司中突出的特点:非常重视模型算法和硬件工程的配合。

deepseek v3论文总共200位作者,并不都是负责ai算法或数据。

有这样一批人从早期的deepseek llm v1到v3一直都在参与,他们更多偏向算力的部分,负责优化硬件。

他们以deepseek ai的名义发表了论文《fire-flyer ai-hpc》,通过软硬件协同设计降低训练成本,解决传统超算架构在ai训练需求上的不足。

fire-flyer也就是幻方ai搭建的萤火2号万卡集群,使用英伟达a100 gpu,却做到相比英伟达官方的dgx-a100服务器有成本和能耗的优势。

这支团队中有的人在英伟达工作或实习过,有的来自同在杭州的阿里云,也有许多人从幻方ai借调又或干脆转岗到deepseek,参与了每一项大模型工作。

而如此重视软硬件协同的成果,就是以llama 3 405b的1/11算力,训练出性能更高的deepseek-v3了。

最后,我们还发现deepseek开源项目中有一个特别的存在,不是语言模型相关工作,却是3d生成相关。

这项成果由清华博士生孙景翔在deepseek实习期间,与导师刘烨斌以及deepseek成员合作完成。

像这样实习生在deepseek做出重要成果的还有中山大学逻辑学专业的辛华剑。

看过这些例子,再一次回到梁文锋的访谈,或许更能理解这只团队的运作结构。

不做前置的岗位分工,而是自然分工

每个人对于卡和人的调动是不设上限的,每个人可以随时调用训练集群,只要几个人都有兴趣就可以开始一个项目

当一个idea显示出潜力,也会自上而下地去调配资源。

这难免让人想起ai界另一家不可忽视的力量,没错就是openai。

同样的用人不看经验,本科生、辍学生只要有能力照样招进来。

同样的重用新人,应届生与00后可以调动资源从无到有研究sora。

同样的面对潜力方向,整个公司从顶层开始设计布局和资源推动。

deepseek,可能是组织形态上最像openai的一家中国ai公司了。

免责声明:该文章系本站转载,旨在为读者提供更多信息资讯。所涉内容不构成投资、消费建议,仅供读者参考。

看了本文的网友还看了
网站地图